martes, 15 de noviembre de 2016

Protección en Sistemas Eléctricos de Potencia



A.- Duración: 40 horas

B.-Objetivo general:

Transmitir al participante los conocimientos fundamentales sobre los principios de operación, filosofía, y criterios de ajustes de los sistemas de protección, basados en las recomendaciones de normas internacionales para la protección de personas, equipos e instalaciones eléctricas.

C.-Objetivos específicos:


  • Analizar los parámetros eléctricos de un sistema de potencia en condiciones normales y anormales
  • Proporcionar los conocimientos necesarios para comprender el principio de operación de los sistemas de protección que conforman en un sistema de potencia.
  • Emplear criterios y normas en el diseño de sistemas de protección para líneas de distribución y transmisión.
  • Emplear criterios y normas en el diseño de sistemas de protección para subestaciones de distribución y transmisión.
  • Reconocer, operar y elaborar programas y procedimientos del mantenimiento de subestaciones 



D.- A Quién va dirigido:

Dirigido al personal de ingeniería, operaciones, mantenimiento y personal encargado de la operación, análisis de mediciones con conocimientos en sistemas de potencia y protecciones eléctricas.


E.-Metodología:
Por la naturaleza del curso los temas serán impartidos mediante exposiciones, con un desarrollo teórico del 80% y práctico del 20%.

F. Requisitos

Los participantes deberán poseer conocimientos generales en ingeniería eléctrica, circuito eléctrico, sistemas trifásicos, sistemas de potencia.

G.- Temario detallado

1. Aspectos básicos

a. Introducción a los sistemas de protección

  • Características de los sistemas de protección
  • Elementos que conforman un sistema de protección
  • Zonas de protección
  • Fallas en un sistema eléctrico
  • Sobrecarga
  • Sobretensiones
  • Cortocircuito
  • Baja frecuencia
  • Oscilaciones de potencia

b. Simbología y nomenclatura ANSI e IEC


2. Transformadores de Corriente y Voltaje


3. Relés -tecnologías y principio de operación 


a. Sobrecorriente (50/51/50N/51N)
b. Direccionales (67/67N)
c. Reconectadores (79)
d. Distancia (21)
e. Diferencial (87)
f. Frecuencia (81)
g. Baja tensión (27)



4. Protecciones de líneas de distribución
a. Fusible
b. Fusibles electrónicos
c. Seccionalizadores
d. Sobrecorriente (50/51/50N/51N)
e. Direccionales (67/67N)
f. Reconectadores (79)
g. Criterios de ajustes


5. Protecciones de líneas de transmisión
a. Distancia (21)
b. Diferencial (87L)
c. Direccionales (67/67N)
d. Sobrecorriente (50/51/50N/51N)
e. Criterios de ajustes



6. Protecciones en Subestaciones eléctricas
a. Configuración de Barras
b. Protección de barra 87B
c. Falla de Interruptor 52BF
d. Protección de Transformador, Reactores y Autotransformadores


  • Protección interna

                 * Térmica (49)
                  *Rele buchholz (63)
                  *Nivel (72)
                  *Imagen térmica (26)


  • Protección Externa

                  *Fusible
                  *Sobrecorriente (50/51/50N/51N)
                  *Diferencial (87T)
                  *Falla de aislamiento (64)

e. Esquemas típicos de protecciones en subestaciones eléctricas
f. Criterios de ajustes para protecciones (50/51/50N/51N) según la NERC/IEEE/IEC
g. Coordinación de protecciones (50/51/50N/51N)

7. Control y protección convencional para subestaciones


8. Tendencias modernas de control y protección para subestaciones (IEC-61850)



9. Algunas Herramientas para estudios de sistemas de protecciones asistidas por computador 



10. Mantenimiento de protecciones
  • inyectores de corriente 
  • Formatos de Pruebas
  • Disposiciones de la NERC para la prueba y ajuste de relé en campo
  • Prueba de relés
               *Distancia (21)
               *Diferencial (87L)
               *Direccionales (67/67N)
               *Sobrecorriente (50/51/50N/51N)
               *Barra (87B)
  •   Aspecto de seguridad

H.- Instructor

Ing. Manuel Briceño, MsC:

Nacido en Maracaibo Estado Zulia 1969, Egresado de Ingeniero Electricista en 1992 de La Universidad del Zulia (Maracaibo-Venezuela), Experiencia profesional (1992-actualidad) en diseño, prueba y puesta en servicio de subestaciones eléctricas en baja, media y alta tensión para la industria eléctrica, petrolera y petroquímica. Diseño de instalaciones eléctricas en media y baja tensión en áreas clasificadas, Diseño eléctrico para instalaciones hospitalarias. Diseño, instalación y pruebas de sistemas de puesta a tierra para sistemas de Telecomunicaciones, plantas de procesos, plantas compresoras de gas, tanques de combustibles, subestaciones eléctrica, salas de control e instalaciones en general. Coordinación y ajustes de protecciones en baja, media y alta tensión. Diseño de instalaciones fotovoltaicas. Conocimientos y manejo de las Normas ANSI/IEEE, IEC, API, PDVSA. COVENIN, Elaboración de especificaciones de equipos mayores, pruebas de aceptación en fábrica, elaboración y evaluación de licitaciones, estimados de costos, planificación de proyectos industriales, Elaboración de ingeniería conceptual, básica y detalle de proyectos multidisciplinarios. Actualmente asesor de ingeniería para varias compañías de ingeniería.

Experiencia Académica: Profesor a tiempo completo, Universidad del Zulia, Facultad de Ingeniería, Escuela de Ingeniería Eléctrica desde 1998 hasta la actualidad, Categoría Asociado, ordinario tiempo completo Cursos: Teoría Electromagnética I, Teoría Electromagnética II, Diseño de Subestaciones y sistemas de Protección.




Si desea recibir información por mail de nuestros cursos, suscríbase a nuestra lista



Email Marketing You Can Trust



Fenómenos Transitorios en Sistemas de Extra y Alta Tensión y Análisis de Fallas


A.- Duración: 40 horas

B.- Contenido:

  *Conceptos fundamentales y modelación del sistema
Valores de tensión de referencia y terminología empleada en alta tensión. Mecanismos de ruptura dieléctrica en materiales sólidos, líquidos y gaseosos. Fenómenos Transitorios en los sistemas de potencia
Circuitos RLC
Modelación de componentes y reducción del sistema (desarrollo de equivalentes del sistema).
Líneas de Extra y Alta Tensión. Características Eléctricas de las Líneas Aéreas. Parámetros representativos: Resistencia eléctrica, Reactancia, Conductancia. Matrices de impedancia. Modelos de las líneas de transmisión. Ondas viajeras. 

   *Eventos de energización y desenergización de cables y líneas de transmisión.
Consideraciones fundamentales.
Técnicas de suicheo.
Energización normal (sin carga atrapada).
Recierre rápido (con carga atrapada).
Desenergización con y sin reencendido.
Impacto de sobrevoltajes y corrientes.
Métodos de mitigación como resistencias de preinserción y control de cierre sincronizado.


   *Aplicaciones de reactores y capacitores en serie.
Consideraciones fundamentales.
Impacto de sobrevoltajes y corrientes.
Pre especificación de equipos.

  *Eventos de energización y desenergización de bancos de capacitores y  reactores en paralelo
Consideraciones fundamentales.
Métodos de mitigación como reactores limitadores de corriente, resistencias/inductancias de pre inserción, control de cierre sincronizado.
Técnicas de suicheo.
Impacto de sobrevoltajes.
Magnificación de voltaje.

* Despeje de falla y voltajes transitorios de recuperación (TRV)
Requisitos para TRV de normas ANSI/IEEE e IEC.
Inserción de fallas y eventos de despeje considerando varios tipos de fallas (trifásico aterrizado/ no aterrizado, fase – fase aterrizado/ no aterrizado, falla línea tierra).
Representación de filosofías de sistemas de operación.
Impactos en el sistema y en interruptores.
Influencia de equipos de la subestación y cableado.
Mitigación de TRV.
Interpretación de resultados y aplicaciones prácticas.
Escenarios de falla-interruptor.
Impacto de sobrevoltajes y corrientes inrush.


*Eventos de energización y desenergización de transformadores.
Impacto de saturación, flujo residual e histéresis.
Técnicas de suicheo.
Impacto de sobrevoltajes, corriente inrush y huecos de voltaje.
Posibles causas y consecuencia de ferroresonancia.

* Análisis de impulsos de rayo y Sobrevoltajes transitorios muy rápidos (VFTO) en subestaciones
Modelación de equipamiento de las subestaciones.
Modelación de la descarga.
Subestaciones aisladas en aire y aisladas en gas (GIS).
Impacto de sobrevoltajes.
El descargador. Características de los descargadores.
Coordinación de aislamiento.
Maniobra de seccionadores en subestaciones en aire y GIS.


C.- Objetivos:
Establecer los conceptos básicos sobre las líneas de transmisión.
Conocer las características Eléctricas de las Líneas Aéreas.
Estudiar los parámetros representativos.
Determinar los modelos de las líneas de transmisión.
Estudiar las características de los conductores.
Establecer los cálculos eléctricos básicos aplicados en las líneas de transmisión.
Determinar los elementos fundamentales.
Analizar el régimen transitorio utilizando ondas viajeras.
Desarrollar un entendimiento de las técnicas de cálculo/simulación para transitorios en sistemas de potencia.
Simular el comportamiento transitorio de las variables eléctricas en una línea de transmisión
Analizar el principio de funcionamiento del programa de simulación.

Ganar experiencia en temas de interés fundamentales para varias aplicaciones así como retroalimentación e interpretación de resultados.
Desarrollar un entendimiento de varias técnicas de modelación para componentes de sistemas de potencia para poder escoger de manera apropiada los modelos y métodos de los fenómenos en específico.
Ganar un entendimiento del uso de los resultados de una simulación de transitorios electromagnéticos para la especificación y diseño de aparatos del sistema de potencia y esquemas de protección de sobrevoltaje para una operación aceptable del sistema.
Conocer las causas que originan sobretensiones en una línea.
Analizar los niveles de sobretensión en al caso de fallas monofásicas y bifásicas.
Seleccionar los dispositivos de protección contra sobretensiones.



D.- Característica: Teórico - Práctico.


E.- PROGRAMA.

Día 1.
 Introducción al Curso. Objetivos del Curso. 
Valores de tensión de referencia. 
Líneas Aéreas Características Eléctricas de las Líneas Aéreas. 
Parámetros representativos.
Principio de funcionamiento del programa de simulación.
 Introducción ATPDraw.
Ejercicio de simulación con circuitos básicos RLC

Día 2.
Líneas de transmisión. Modelación de líneas de transmisión
Eventos de energización y desenergización.
Representación de parámetros y líneas en el programa ATPDraw.
Ejercicio de simulación de energización y desenergización de líneas.

Día 3.
Aplicaciones de reactores y capacitores en serie.
 Energización y desenergización de bancos de capacitores.
Inserción de falla.
Ejercicio de simulación de energización y desenergizaciónde .
Banco de capacitores.

Día 4.
Despeje de falla y voltajes transitorios de recuperación.
Energización y desenergización de transformadores.
Ejercicio de simulación de fallas y despeje de falla.
Ejercicio de simulación de energización y desenergización de transformadores.

Día 5.
El descargador. Características de los descargadores.
Impulsos de rayo y sobrevoltajes transitorios muy rápidos. Coordinación de Aislamiento.
Ejercicio de simulación de Impulso de rayos.
Ejercicio de simulación de descargadores 


F.- Requisitos: Tener un computador por persona donde esté instalado el ATPDraw.


Instructor:
M.Sc. Nerio Ojeda:

Ingeniero Electricista mención Potencia, graduado en 1993 de la Universidad Central de Venezuela (UCV). Entre 1993 y 1995 se desempeño como ingeniero de una empresa especialista en sistemas de puesta a tierra y protección contra descargas atmosféricas.
Desde el año de 1995 es profesor de la UCV, dictando materias como Sobretensiones Transitorias, Conversión Electromecánica, Sistemas de Puesta a Tierra y Laboratorios de Máquinas Eléctricas.

En el año 2006 obtiene el título de Magíster Scientiarum en Ingeniería Eléctrica de la Universidad Central de Venezuela, ese mismo año es incorporado como profesor al Postgrado de la Escuela de Ingeniería Eléctrica.

Ha participado como ponente en congresos como ALTAE, CVIE, SICEL y CODELECTRA, también ha sido expositor en Jornadas de la UCV y UNEXPO. Desde el año 2002 es considerado como árbitro de diversos congresos y revistas nacionales e internacionales.
Dentro de las actividades de extensión se tienen cursos dictados tanto dentro como fuera de la UCV, entre los cuales se encuentran: Protecciones contra descargas Atmosféricas en edificios y casetas de telecomunicaciones y Sistemas de Puesta a Tierra. También ha realizado asesorías en las áreas de Sistemas de Puesta a Tierra, Protecciones contra descargas Atmosféricas y Calidad de servicio.

Desde el año 2002, es miembro del Subcomité Técnico Sc-7, Instalaciones Eléctricas de CODELECTRA






Si desea recibir información por mail de nuestros cursos, suscríbase a nuestra lista



Email Marketing You Can Trust



viernes, 11 de noviembre de 2016

Curso abierto Cómo interpretar un reporte de análisis de lubricantes 2017

Jueves 18 y viernes 19 de mayo de 2017

Duración: 16 horas

DETERMINE los modos de falla presentes en la maquinaria, PRONOSTIQUE lo que va a ocurrir tanto en el lubricante como en la maquinaria, ESTABLEZCA objetivos y
límites, TOME decisiones y PROGRAME actividades proactivas, preventivas y correctivas,
basadas en la causa raíz del problema.

USTED APRENDERÁ A DIAGNOSTICAR, PRONOSTICAR Y TOMAR DECISIONES DE
MANTENIMIENTO ACERTADAS.

Estructurado bajo la modalidad de curso-taller, se utiliza un mínimo de teoría y un alto
porcentaje de actividades prácticas, de manera que usted APRENDE HACIENDO, lo que le
garantiza un máximo aprovechamiento, comprensión y aplicación inmediata de lo aprendido.
Las inversiones en un buen programa de análisis de lubricantes pueden generar espectaculares beneficios económicos y afectar de manera positiva la confiabilidad de la instalación industrial, siempre y cuando la información proveniente de la muestra de aceite sea analizada en el laboratorio, plasmada en el reporte y pueda ser convertida por un experto en un diagnóstico de la condición del lubricante y de la maquinaria. Con el diagnóstico, la información de las muestras anteriores y el conocimiento del equipo en su entorno operacional, será posible establecer un pronóstico y, en función de este, se podrán establecer las decisiones de mantenimiento dirigidas a corregir la causa o las causas que ocasionan la condición anormal. 

Tópicos del Seminario:
• Definiendo los objetivos y conceptos del análisis de lubricantes.
• Técnica de interpretación del reporte del análisis de lubricantes.
• Clasificación de las pruebas del análisis de lubricantes.
• Determinación de objetivos y límites
• Definición de escenarios de diagnóstico y tendencia.
• Interpretando el reporte.
• Modos de falla detectados por el análisis de lubricante.
• Generación de gráficos.
• El proceso del diagnóstico.
• Casos de PRÁCTICA.


Instructor:
Francisco Páez:
Consultor técnico senior con más de 30 años de experiencia en lubricación y monitoreo de
condición. Está certificado por ICML como MLA III y MLT II y es un instructor certificado de Noriaque trabaja como consultor técnico en campo implementando programas de lubricación y análisis de aceite, auditorías de lubricación y escritura de especificaciones de lubricantes.


Información General

Lugar: Club de Tenis Buena Vista Quito
Inversión del curso: $690 + IVA 
Dirección: Av. Brasil y Carlos Darwin
Días del curso: Jueves 18 y viernes 19 de mayo de 2017
Horario: 8:30 a 17:00 horas



Si desea pre-inscribirse en este curso, por favor déjenos sus datos para contactarlo cuando se acerque la fecha








Si desea recibir información por mail de nuestros cursos, suscríbase a nuestra lista



Email Marketing You Can Trust



jueves, 10 de noviembre de 2016

Operación en tiempo real de Sistemas de Potencia con énfasis en prevención de colapso total (BLACKOUT)



Duración: 40 horas. Característica: teórico y práctico

A quien va dirigido: Ingenieros y técnicos superiores asociados a la operación o la planificación operativa de un sistema de potencia (SP) de alta, extra y ultra alta tensión

Objetivos:
OBJETIVO GENERAL: Entender las razones básicas por las cuales un SP puede llegar al colapso parcial o total (blackout) y como puede restaurarse el servicio paulatinamente


OBJETIVOS ESPECÏFICOS:

  • Repasar la modelación de los elementos de un SP, en componentes simétricas.
  • Revisar los conceptos de energía, torque, velocidad, potencia, carga, corriente alterna, corriente directa, R, L, C, MW, MVAR, MVA, factor de potencia.
  • Entender los equilibrios fundamentales existentes de SP sano. Voltaje versus potencia reactiva, frecuencia versus potencia activa
  • Internalizar los estados de un SP: normal, alerta, emergencia, extrema emergencia, restauración
  • Centros de control modernos y sus aplicaciones digitales de apoyo. Las responsabilidades del despachador de carga a medida que crece la sofisticación de las simulaciones digitales
  • Entender el propósito del análisis en régimen permanente
  • Entender el propósito Análisis en régimen transitorio y dinámico
  • Internalizar las diferencias entre estabilidad de ángulo y estabilidad de voltaje. Interrelaciones
  • Captar la misión de los esquemas de separación de áreas y de las interconexiones
  • Entender los fundamentos de control de voltaje y frecuencia


D.- Metodología 

  • Clases presenciales
  • Evaluación continua
  • Simulaciones digitales
  • Discusión de casos



E.- PROGRAMA.
Día 1. Conceptos Básicos
  • Conceptos básicos de energía, potencia, torque velocidad, voltaje, corriente, generación, carga, circuitos magnéticos, Ley de Faraday/Lenz, saturación del hierro.
  • Flujos de potencia activa y reactiva. Principio de desacople. Importancia en la operación en tiempo real.
  • Limites estacionarios del generador sincrónico. Angulo de torque.  Tipos de plantas de generación y sus limitantes operacionales.  Estator, rotor, anillos de retención. Medidas preventivas. Falacias acerca del factor de potencia de la maquina.

Día 2. El entorno del despachador de carga en un centro de control moderno
  • Centros de control de transmisión (energymanagementsystem-  EMS)
  • Aplicaciones fundamentales y sus objetivos en la prevención de colapsos.
  • Scada. AGC. Estimación de estados. Verificación de límites operacionales. Acciones correctivas. Acciones preventivas. Syncrofasores
  • Visión de la operación económica. Objetivos
  • Misión del análisis de contingencias y su importancia en la formación de despachadores. El propósito del Flujo de carga del despachador. El análisis de cortocircuito para prevenir daño de los interruptores. El problema de estabilidad ante grandes perturbaciones. Riesgos de pérdida de sincronismo. Las perturbaciones de pequeña señal (variaciones de carga). Nociones de oscilaciones de potencia.
  • El futuro análisis de inestabilidad de voltaje. Orígenes y precauciones.
  • Aplicaciones  vitales de flujo de carga. Barras de voltaje controlado. Barra de regulación de frecuencia. Análisis practico de contingencias. Limitantes de las maquinas térmicas en el control de voltaje. Fundamentos de redespacho para aliviar emergencias. Economía versus seguridad del sistema. Extrema emergencia. Bote de carga manual o automático. La importancia de la consola de entrenamiento de despachadores (DTS)
  • La falacia de la eterna operación automatizada. La confiabilidad humana
  • Simulaciones digitales. Discusión



Día 3. La importancia del análisis de cortocircuito en la operación de un sistema
  • Las corrientes de cortocircuito en el generador sincrónico
  • Modelación en componentes simétricas de máquinas, líneas, transformadores y cargas. Conexiones delta estrella. Grupos vectoriales.
  • Modelación versus oscilógrafo. La dinámica de la carga
  • Daño térmico versus coordinación de protecciones
  • El origen de los altos niveles de cortocircuito y sus riesgos inevitables.
  • La importancia de la resistividad del suelo y de las zonas de protección
  • Fallas transversales versus fallas longitudinales. Despeje monopolar y sus limitantes
  • Daño térmico versus desequilibrios de potencia activa. El germen de la aceleración rotórica.
  • Simulaciones digitales. Discusión


Día 4. La importancia del análisis de estabilidad de ángulo en la operación de un SP
  • Las grandes perturbaciones y el riesgo de pérdida de sincronismo.
  • La ecuación de oscilación rotorica. Energía cinética versus interconexiones eléctricas.
  • Factores de prevención ante el riesgo de pérdida de sincronismo.
  • Entendimiento del criterio de areas iguales como herramienta vital para crear conciencia en los despachadores de carga. Cadenas de eventos versus tiempo critico de despeje.
  • Centro eléctrico y la importancia de los sincrofasores. Ubicación de los esquemas de separación de áreas. Nociones de estabilidad de frecuencia.
  • Impacto de las variaciones de la carga en la estabilidad de ángulo. Oscilaciones de potencia. Torques amortiguantes versus torques sincronizantes. Razón de ser de los PSS.
  • Simulaciones digitales. Discusión




Día 5. La importancia del control de voltaje y frecuencia en la operación de un SP
  • Nociones de inestabilidad de voltaje.  La curva de la nariz. Excursiones del voltaje
  • Carencia de soporte reactivo y el rol del despachador
  • Estabilidad de voltaje versus estabilidad ángulo
  • El peligro de las tomas variables bajo carga
  • La importancia de la regulación de voltaje
  • Regulación automática de voltaje y riesgo de inestabilidad de pequeña señal
  • La genética de un SP desde el punto de vista del despachador de carga
  • Fundamentos de control de frecuencia e intercambios. ACE.
  • Rol de las reservas rodantes. Rol de las reservas de arranque rápido.
  • Colapso parcial o total  de un sistema. Criterios de separación de áreas.  Control de frecuencia y voltaje en modo isla. Necesidad de unidades de blackstart. Magnitud de los servicios auxiliares de una planta. Relés de sincronización. Estabilidad de frecuencia
  • Simulaciones digitales. Discusión



Requisitos:
  • Internet
  • Un laptop por cada par de participantes para realizar simulaciones
  • Software sugerido: Matlab  y Powerworld
  • Conocimientos básicos de energía eléctrica a nivel de técnico superior




Instructor: Dr. Juan F.Bermúdez Q.
  • Venezolano, Ingeniero eléctrico graduado en la Universidad de Carabobo
  • Ph.D., University of Manchester, United Kingdom, 1977
  • Profesor tiempo completo en la Universidad Simón Bolivar (USB), Venezuela, desde 1986.
  • Miembro de IEEE, desde 1986.Director de  IEEE Venezuela  1998 - 2012.
  • Presidente IEEE Andescon 1999 y  2006 IEEE PES T&D para Latinoamérica
  • Ingeniero y Consultor en Operación y sistemas eléctricos de potencia en Venezuela, desde1978.
  • Conocimientos técnicos:

    *Planificación y Operación de Sistemas de Energía Eléctrica Análisis de Sistemas Eléctricos en General Sistemas de Potencia Lineales y No-Lineales en Régimen Permanente y Transitorio.
    * Cálculos de Flujo de Carga, Análisis de Sensibilidad, Cortocircuitos, Estabilidad de Angulo.
    * Estabilidad de Voltaje Estimación de Estados. Centros de Control Maquinas Eléctricas y sus Lazos de Control de velocidad y Voltaje Despacho Económico en Sistemas Hidro-Térmicos. Valor del Agua. Investigación de Operaciones Aplicada. Lineal, No- Lineal, Entera, Mixta Mercados Eléctricos Auditados y no Auditados.
   *Congestión en Transmisión. Poder de Mercado. Equilibrio de Nash – Cournot. Fundamentos de Microeconomía. Bote de Carga Mínimo ante Situaciones de Racionamiento Probabilidad y Estadística Aplicada.
   * Procesos Aleatorios. Confiabilidad / Disponibilidad de Sistemas en Generación, Transmisión y Distribución de Energía Eléctrica.
   *Procesos de Markov. Sistemas Reparables y No-Reparables. Simulaciones de Monte Carlo. RCM - Mantenimiento Preventivo Centrado en Confiabilidad.
  * Gerencia de Sistemas Eléctricos
·       

  •         Más de 70 publicaciones técnicas digitales e impresas
  •     Profesor visitante, U.T.P., Panama, 2008
  •     Miembro de  USB R&D Foundation (Funindes-USB),desde 1986 Ambassador PTS-USA (2016)


Si desea recibir información por mail de nuestros cursos, suscríbase a nuestra lista



Email Marketing You Can Trust



lunes, 7 de noviembre de 2016

Curso Abierto Fundamentos de Lubricación de Maquinaria 2017

Lunes 15, martes 16 y miércoles 17 de mayo



Teoría y Práctica en Perfecto Equilibrio: Este seminario descubre los avances de la tecnología de la lubricación y los aditivos para permitirle aprovechar su desempeño en beneficio de sus equipos. Nuestros instructores logran presentar el seminario con un perfecto equilibrio entre los conocimientos teóricos de las nuevas tecnologías y analogías con ejemplos prácticos para que Usted pueda aplicar estos conocimientos en su planta de forma inmediata.
Usted Aprenderá :

  •  Como construir un programa de almacenamiento y manejo de lubricantes seguro y efectivo.
  • Como evaluar filtros y seleccionar el sistema de filtración correcto. Sistema de codificación y etiquetado de lubricantes - qué hacer y qué no hacer.
  •  Los mejores procedimientos de la industria para el engrasado de rodamientos de motores eléctricos.
  •  Como seleccionar el lubricante correcto, para colocarlo en el lugar correcto, en el intervalo de tiempo correcto y en la cantidad correcta.


Contenido del Seminario

  •  Cómo la Lubricación Afecta la Confiabilidad de la Maquinaria
  •   Fundamentos de Lubricación
  •   Comprendiendo los Aditivos, Aceites Básicos y Espesantes de las Grasas
  •   Propiedades de Desempeño de los Lubricantes
  •  Lubricantes de Grado Alimenticio y Amigables con el Ambiente
  •  Métodos de Aplicación de Grasas Lubricantes
  •   Métodos de Aplicación de Aceites Lubricantes
  •  Lubricación de Cojinetes Planos
  •   Lubricación de Rodamientos
  • Lubricación de Engranajes
  •   Lubricación Automotriz, Equipos Móviles y Transmisiones
  •  Lubricación de Compresores.
  •  Lubricación de Turbinas de Vapor de Gas.
  •  Fluidos Hidráulicos.
  • Control de la Contaminación.
  •  Cambio de Aceite, Lavado y Administración de Tanques.
  •  Almacenamiento, Manejo y Administración de Lubricantes.
  •  Diseño e Inspecciones para la Excelencia en Lubricación.
  •  Fundamentos de Análisis de Aceite y Muestreo de Aceite Usado.
  •   Inspecciones de Campo Esenciales. 



Al finalizar el curso, el ICML ofrece la oportunidad de presentar el examen de certificación como:
Técnico en Lubricación de Maquinaria Nivel 1 (MLT-1) o  Analista de Lubricación de Maquinaria (MLA-1)


Usted Recibe:

El pago de su cuota le proporciona el mejor entrenamiento disponible a nivel mundial, además de:

  • Manual del Seminario: Incluye copias de las láminas de la presentación,  tablas y casos de estudio - Indispensable como referencia en su trabajo.
  • Certificado de participación
  • Coffee break durante el seminario (2)  y almuerzo al medio día

INSTRUCTOR:

Francisco Páez: 


Consultor técnico senior con más de 30 años de experiencia en lubricación y monitoreo de condición. Está certificado por ICML como MLA III y MLT II y es un instructor certificado de Noria que trabaja como consultor técnico en campo implementando programas de lubricación y análisis de aceite, auditorías de lubricación y escritura de especificaciones de lubricantes. 




Información General:
Lugar: Club de Tenis Buena Vista
Inversión del curso: $990 + IVA
Precio por derecho a rendir examen de certificación avalado por el ICML (examen optativo y puede escoger entre las certificaciones MLA1, MLT 1 y MLT 2): $250 + IVA
Dirección: Av. Brasil y Carlos Darwin 
Días del curso: Lunes 15, martes 16 y miércoles 17 de mayo
Día del examen de certificación: miércoles 17 de mayo de 16:30 a 19:30
Horario: 8:30 a 17:30 horas

Si desea pre-inscribirse en este curso, por favor déjenos sus datos para contactarlo cuando se acerque la fecha








Si desea recibir información por mail de nuestros cursos, suscríbase a nuestra lista



Email Marketing You Can Trust



miércoles, 2 de noviembre de 2016

Taller de Gestión de Mantenimiento Centrado en Confiabilidad RCM 2017


Martes 25 y miércoles 26 de abril de 2017

OBJETIVO.
Optimizar el mantenimiento de máquinas, equipos y sistemas a través de la aplicación sistemática e integral de la metodología RCM con repercusión positiva en la productividad, confiabilidad, mantenibilidad y disponibilidad de activos.


DIRIGIDO A.

  • Personas involucrados en la gestión del mantenimiento: planes de mantenimiento, análisis predictivo, gestores de confiabilidad, control calidad, aseguramiento de calidad, planeación, producción y programación, inspectores, ingeniería de soporte e integridad mecánica.
  • Personal involucrado en el diseño y fabricación de componentes.
  • Personas involucradas en la operación de activos
  • Personal de nivel táctico, estratégico y gerencial encargado de gestionar, coordinar y auditar los resultados de la iniciativa RCM.



METODOLOGÍA.
El curso se enfocará en talleres que den herramientas útiles en la implementación de la metodología RCM y estará acompañado de conceptos que fundamenten los talleres.


MATERIAL:  Es necesario que cada asistente tenga una laptop.

Deseable que los asistentes puedan traer al curso Manuales técnicos de Componentes o sistemas para analizarlos en clase.

CONTENIDO TEMÁTICO.

Día 1. 

*Introducción al mantenimiento centrado en confiabilidad

  • Historia y Proceso lógico
  • Beneficios del RCM
  • Análisis de Weibull
  • Modelamiento de la confiabilidad

*Funciones

  • Describir funciones
  • Contexto operacional
  • Tipos de funciones

*Fallas funcionales

  • Que son las fallas funcionales

*Análisis de modo de falla y sus efectos - FMEA

  • Que es un modo de falla
  • Categorías de los modos de falla
  • Efectos de falla
  • Niveles de análisis

* Taller 1.


Día 2.

*Consecuencias de fallas  Funciones oculta y evidentes

  • Consecuencias ambientales y de seguridad
  • Consecuencias operacionales
  • Consecuencias no operacionales
  • Consecuencias de fallas ocultas

*Análisis de criticidad 
*Mantenimiento proactivo

  • Tareas preventiva
  • Tareas Predictivas
  • Tareas de búsquedas de falla

*Diagrama lógico de decisión

*Taller 2.




Instructor:

Ing. Andrés Lobo :

Ingeniero aeronáutico graduado de la Universidad de San Buenaventura en Bogotá, Colombia.  Magister de ciencias en administración de ingeniería graduado del Politécnico de Milán, Italia. Magister  en  ingeniería de confiabilidad y riesgo de la Universidad de las Palmas de Gran Canarias, España. Profesional certificado CMRP. Experiencia especifica como ingeniero de confiabilidad donde desarrolló análisis causa raíz, modelación CMD, análisis de Weibull, análisis FMEA, entre otros. Actualmente se desempeña como director general de la empresa R2A Consultoría SAS, con la cual ha implementado programas de confiabilidad y gestión de activos. Es docente de la cátedra programa de confiabilidad del instituto militar aeronáutico de la Fuerza Aérea Colombiana y ha precedido varios cursos específicos en temas de ingeniería de confiabilidad y gestión de activos bajo el marco de referencia PAS 55. 



Información general:


Información General
Lugar: Club de Tenis Buena Vista Quito
Inversión del curso: $650 +  IVA
Dirección: Av. Brasil y Carlos Darwin
Días del curso: Quito: Martes 25 y miércoles 26 de abril 
Horario: 8:30 a 17:30 horas
INFORMACIÓN Y REGISTRO



INFORMACIÓN 

Claudia Torres
claudiatorres@formared.com.ec
Tel. 0998 048817 - 099 8036199

Si desea preinscribirse en este curso, favor llene este formulario para tenerlo en cuenta cuando se acerque la fecha





Si desea recibir información por mail de nuestros cursos, suscríbase a nuestra lista

Email Marketing You Can Trust




Related Posts Plugin for WordPress, Blogger...